For triangle MNP with vertices M (-4, -2), N (6, -2), and P -2, 10). Find the coordinates of each one.

the centroid


the orthocenter

Respuesta :

Answer:

The centroid of MNP is [tex](0,2)[/tex] and the orthocenter of the MNP is [tex](-2,\frac{-2}{3})[/tex].

Step-by-step explanation:

The vertices of triangle are M (-4, -2), N (6, -2), and P (-2, 10).

Centroid of a triangle is the intersection point of all medians.

Formula for centroid

[tex](\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})[/tex]

The centroid of MNP is

[tex](\frac{-4+6-2}{3},\frac{-2-2+10}{3})[/tex]

[tex](\frac{0}{3},\frac{6}{3})[/tex]

[tex](0,2)[/tex]

Orthocenter of a triangle is the intersection point of all altitudes.

We have to find the intersection of at least two altitudes.

Slope of a line is

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

From the figure it is noticed that the line MN is a horizontal line, slope of MN is

[tex]m=\frac{-2+2}{6+4}=0[/tex]

The product of slopes of perpendicular lines is -1. Therefore the product of slopes of MN and AP is -1.

[tex]m_{MN}\times (m_{AP})=-1[/tex]

[tex]0\times (m_{AP})=-1[/tex]

[tex]m_{AP}=\frac{-1}{0}[/tex]

Point slope form

[tex]y-y_1=m(x-x_1)[/tex]

Where m is slope.

Equation of AP is

[tex]y-10=\frac{-1}{0}(x+2)[/tex]

[tex]0=x+2[/tex]

[tex]x=-2[/tex]                           ..... (1).

Slope of MP is

[tex]m_{MP}=\frac{10+2}{-2+4}=\frac{12}{2}=6[/tex]

The product of slopes of perpendicular lines is -1. Therefore the product of slopes of MP and NB is -1.

[tex]m_{MP}\times (m_{NB})=-1[/tex]

[tex]6\times (m_{NB})=-1[/tex]

[tex]m_{NB}=\frac{-1}{6}[/tex]

Equation of NB is

[tex]y+2=\frac{-1}{6}(x-6)[/tex]

[tex]6y+12=-x+6[/tex]

[tex]x+6y=-6[/tex]            ..... (2)

Using equation (1) we get

[tex](-2)+6y=-6[/tex]

[tex]6y=-4[/tex]

[tex]y=-\frac{2}{3}[/tex]

Therefore the orthocenter of the triangle is [tex](-2,\frac{-2}{3})[/tex].

Ver imagen DelcieRiveria