Kite QRST has a short diagonal of QS and a long diagonal of RT. The diagonals intersect at point P. Side QR= 5 m and diagonal QS= 6m. Find the length of segment RP

Respuesta :

Answer:

Given the statement: Kite QRST has a short diagonal of QS and a long diagonal of RT. The diagonals intersect at point P.

Properties of Kite:

  • The diagonals are perpendicular
  • Two disjoint pairs of consecutive sides are congruent by definition of kite
  • One diagonal  is the perpendicular bisector to the other diagonal.

It is given that: Side QR = 5m and diagonal QS = 6m.

Then, by properties of kite:

[tex]QP = \frac{1}{2}QS[/tex]

Substitute the value of QS we get QP;

[tex]QP = \frac{1}{2}(6)[/tex] = 3 m

Now, in right angle [tex]\triangle RPQ[/tex]

Using Pythagoras theorem:

[tex]QR^2= RP^2 +QP^2[/tex]

Substitute the given values we get;

[tex](5)^2= RP^2 +(3)^2[/tex]

or

[tex]25= RP^2 +9[/tex]

Subtract 9 from both sides we get;

[tex]16= RP^2[/tex]

Simplify:

[tex]RP = \sqrt{16} = 4 m[/tex]

Therefore, the length of segment RP is, 4m


Ver imagen OrethaWilkison

Answer:

[tex]PR=4m[/tex]

Step-by-step explanation:

Firstly, we will draw diagram  for kite

we are given

QR=5m

QS=6m

we know that QPR is a right angled triangle

so, QP=PS

[tex]QP=\frac{1}{2} QS[/tex]

[tex]QP=\frac{1}{2}\times 6[/tex]

[tex]QP=3[/tex]

now, we can use Pythagoras theorem

[tex]QR^2=QP^2+PR^2[/tex]

now, we can plug values

[tex]5^2=3^2+PR^2[/tex]

[tex]PR=4[/tex]

Ver imagen rejkjavik