Answer:
c = 2, d = 3
Step-by-step explanation:
multiply factors on left side gives
9 c [tex]y^{3+d}[/tex] = 18[tex]y^{6}[/tex] ( divide both sides by 9 )
c[tex]y^{3+d}[/tex] = 2[tex]y^{6}[/tex]
For both sides to be equal then
c = 2 and 3 + d = 6 ⇒ d = 3
As a check
left side = 2[tex]y^{3}[/tex] × 9[tex]y^{3}[/tex] = 18[tex]y^{6}[/tex] = right side