Respuesta :
Given that the volume of cylinder at STP = 11.2 L
Standard temperature = 273 K
Standard pressure = 1 atm
Calculating the volume of gas at 202.6 kPa and 300. K:
Applying the combined gas law,
[tex]\frac{P_{1}V_{1}}{T_{1}} =\frac{P_{2}V_{2}}{T_{2}}[/tex]
[tex]P_{1} =1 atm[/tex]
[tex]V_{1}=11.2 L[/tex]
[tex]T_{1}=273K[/tex]
[tex]P_{2}[/tex]= [tex]202.6 kPa*\frac{1 atm}{101.325 kPa} =2 atm[/tex]
[tex]V_{2}= ? [/tex]
[tex]T_{2}=300. K[/tex]
Plugging in the values and calculating final volume:
[tex]\frac{(1atm)(11.2L)}{(273 K)} =\frac{(2atm)(V_{2})}{(300K)}[/tex]
[tex]V_{2}=6.15 L[/tex]
Therefore the correct answer will be, b) 6.15 L
The the volume of this gas at 202.6 kPa and 300 K is 6.15 L.
The combined gas law,
[tex]\rm \bold{ \frac{P_1 V_1}{T_1} = \frac{P_2 V2}{T_2} }[/tex]
Where,
P1 = 1atm P2 = 202.6 kPa = 2atm
V1 = 11.2 L V2 = ?
T1 = 273 K T2 = 300 K
Put the value in formula we get,
[tex]\rm\bold{ V_2 = 6.15 L}[/tex]
Hence, we can conclude that, The the volume of this gas at 202.6 kPa and 300 K is 6.15 L.
To know more about gas law, refer to the link:
https://brainly.com/question/12669509?referrer=searchResults