Respuesta :

1. Answer: C

Step-by-step explanation:

[tex]f(x) = \frac{x-3}{x^{2}-7x+12}[/tex]

[tex]f(x) = \frac{x-3}{(x-3)(x-4)}[/tex]

denominator cannot equal zero so x ≠ 3 and x ≠ 4

Since x - 3 cancels out, then x = 3 is a HOLE

Since x - 4 does not cancel out, then x = 4 is a Vertical Asymptote

***********************************************************************************

2. Answer: B

Step-by-step explanation:

  [tex]\frac{11x^{2}-11}{x}[/tex] ÷ [tex]\frac{11(x^{2}+11)}{32x^{2}-11x}[/tex]

= [tex]\frac{11(x + 1)(x - 1)}{x}[/tex] ÷ [tex]\frac{11(x^{2}+11)}{x(32x-11)}[/tex]

= [tex]\frac{11(x + 1)(x - 1)}{x}[/tex] X [tex]\frac{x(32x-11)}{11(x^{2}+11)}[/tex]

= [tex]\frac{(x + 1)(x - 1)(32x - 11)}{x^{2}+11}[/tex]

***********************************************************************************

3. Answer: C

Step-by-step explanation:

The parent graph has asymptotes of x = 0, y = 0

The vertical asymptote is shifted to the left 6 units ⇒ x - (-6)  ⇒  x + 6

The horizontal asymptote is shifted up 2 units ⇒ +2

So, y = [tex]\frac{4}{x}[/tex]

transformations is: y = y = [tex]\frac{4}{x+6} + 2[/tex]