Respuesta :

Answer:

[tex]x1=\frac{5+\sqrt{37}} {6}[/tex]

[tex]x2=\frac{5-\sqrt{37}} {6}[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]3x^{2} -5x-1=0[/tex]  

so

[tex]a=3\\b=-5\\c=-1[/tex]

substitute in the formula

[tex]x=\frac{5(+/-)\sqrt{(-5)^{2}-4(3)(-1)}} {2(3)}[/tex]

[tex]x=\frac{5(+/-)\sqrt{37}} {6}[/tex]

[tex]x1=\frac{5+\sqrt{37}} {6}[/tex]

[tex]x2=\frac{5-\sqrt{37}} {6}[/tex]

Answer:

5+SQRT 37/6

5-SQRT 37/6

Step-by-step explanation:

ApeCks