Respuesta :

Answer:

BC = 5 m

AC = 3.66 m

Step-by-step explanation:

Using the sin rule,

AB×sin C = BC×Sin A

5√2 × Sin 30 =  a sin 45

3.5355 = BC sin 45

BC = 3.5355/sin 45

    = 5 m

AC × sin 105 = 5√2 × sin 30

AC = 3.5355/sin 105

      = 3.66 m

Answer:

Step-by-step explanation:

It is given  that in ΔABC, [tex]AB=5\sqrt{2}[/tex], ∠A=45°, ∠C=30°.

Now, using the angle sum property in ΔABC, we have

[tex]{\angle}A+{\angle}B+{\angle}C=180[/tex]

[tex]45+{\angle}B+30=180[/tex]

[tex]{\angle}B=105^{\circ}[/tex]

Using the sine law, we have

[tex]ABsinC=BCsinA[/tex]

Substituting the given values, we have

[tex]5\sqrt{2}{\times}\frac{1}{2}=BC{\times}\frac{1}{\sqrt{2}}[/tex]

[tex]\frac{5}{2}=\frac{BC}{2}[/tex]

[tex]BC=5[/tex]

Again using sine law, we have

[tex]BCsinA=ACsinB[/tex]

Substituting the values, we have

[tex]5{\times}\frac{1}{\sqrt{2}}=AC{\times}sin105[/tex]

[tex]\frac{5}{1.365}=AC[/tex]

[tex]AC=3.66[/tex]

Therefore, the value of BC  and AC are [tex]5[/tex] and [tex]3.66[/tex].

Ver imagen boffeemadrid