The wavelength of violet light is about 425 nm (1 nanometer = 1 × 10−9 m). what are the frequency and period of the light waves?

Respuesta :

1) Frequency: [tex]7.06\cdot 10^{14} Hz[/tex]

The frequency of electromagnetic radiation is given by:

[tex]f=\frac{c}{\lambda}[/tex]

where

[tex]c = 3 \cdot 10^8 m/s[/tex] is the speed of light

[tex]\lambda[/tex] is the wavelength

In this case, the wavelength of the radiation is

[tex]\lambda=425 nm=425\cdot 10^{-9} m[/tex]

Therefore the frequency is

[tex]f=\frac{3\cdot 10^8 m/s}{425 \cdot 10^{-9} m}=7.06\cdot 10^{14} Hz[/tex]


2) Period: [tex]1.42\cdot 10^{-15} s[/tex]

The period is equal to the reciprocal of the frequency of the wave:

[tex]T=\frac{1}{f}[/tex]

Using the frequency we found previously, [tex]f=7.06\cdot 10^{14} Hz[/tex], we find:

[tex]T=\frac{1}{7.06\cdot 10^{14} Hz}=1.42\cdot 10^{-15} s[/tex]