There are two ways you could do this:
[Note: you can only combine exponents when the bases are the same.
x³ The "x" is where the base is.
For example:
[tex]\frac{x^2}{y} =\frac{x^2}{y}[/tex]
[tex]x^{2}(y^{2})=x^2y^2[/tex]
#1: When you multiply a variable/number with an exponent by a number with an exponent, you add the exponents.
For example:
[tex](x^{2})({x^4})=x^{2+4}=x^6[/tex]
[tex](x^{3})(x^6)=x^{3+6}=x^9[/tex]
[tex](2^{2})(2^3)=2^{2+3}=2^5 = 32[/tex]
So you can do:
[tex]\frac{2^6(2^{-4})}{2^7} =\frac{2^{6+(-4)}}{2^7} =\frac{2^{6-4}}{2^7} =\frac{2^2}{2^7}=\frac{4}{128} =\frac{1}{32}[/tex]
#2: When you have a negative exponent, you move it to the other side of the fraction to make the exponent positive.
For example:
[tex]x^{-2}[/tex] or [tex]\frac{x^{-2}}{1} =\frac{1}{x^2}[/tex]
[tex]\frac{1}{y^{-3}} =\frac{y^3}{1}[/tex] or y³
So you do:
[tex]\frac{2^6(2^{-4})}{2^7} =\frac{2^6}{2^7(2^4)} =\frac{2^6}{2^{11}} =\frac{64}{2048} = \frac{1}{32}[/tex]
Your answer is A