In isosceles triangle △ABC,
AC
is the base and
AD
is the angle bisector of ∠A. What are the measures of the angles of this triangle if m∠ADB = 110°?

Respuesta :

Answer:

Isosceles triangle:

* two sides are equal.

* the base angle are always equal and

* the altitude is a perpendicular distance from the vertex to the base.

Since, the triangle ABC is an isosceles and AC is the base

⇒ AB=BC and  [tex] \angle A = \angle C[/tex]

Also, AD is the angle bisector of [tex]\angle A[/tex], which implies that it cuts the angle at A in two equal halves,

let [tex] \angle A= x^{\circ}[/tex], then the bisectors cuts it in [tex](x/2)^{\circ}[/tex].

As per the given information, we know [tex]\angle ADB[/tex]  is 110°, therefore, the line BDC forms a supplementary angle;

⇒[tex]\angle CDA = 180-110 =70^{\circ}[/tex]

As shown in picture given below:

By sum of all interior angles in a triangle is 180 degree, thus

[tex]x+\frac{x}{2} +70^{\circ} =180^{\circ}[/tex] or

[tex]\frac{3x}{2} = 180-70 = 110^{\circ}[/tex]

Simplify:

[tex]x=\frac{220}{3} = 73\frac{1}{3}^{\circ}[/tex]

Therefore, the [tex]\angle A =\angle C = 73\frac{1}{3}^{\circ}[/tex].

Now, to find the angle B, we have;

[tex]\angle A+ \angle B +\angle C = 180^{\circ}[/tex]    [Sum of the measure of the angles in a triangle is 180 degree]

or

[tex]2\angle A+\angle B = 180^{\circ}[/tex]  or

[tex]\angle B = 180^{\circ}- 2\cdot \frac{220}{3} =180^{\circ}-\frac{440}{3}[/tex]

Simplify:

[tex]\angle B = \frac{100}{3}= 33 \frac{1}{3}^{\circ}[/tex].



Ver imagen OrethaWilkison