Respuesta :

[tex]\bf (\stackrel{x_1}{\frac{1}{2}}~,~\stackrel{y_1}{\frac{2}{3}})\qquad (\stackrel{x_2}{\frac{3}{2}}~,~\stackrel{y_2}{\frac{5}{3}}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{~~\frac{5}{3}-\frac{2}{3}~~}{\frac{3}{2}-\frac{1}{2}}\implies \cfrac{~~\frac{3}{3}~~}{\frac{2}{2}}\implies \cfrac{1}{1}\implies 1[/tex]

slope = 1

to calculate the slope m use the gradient formula

m = (y₂ - y₁ ) / (x₂ - x₁ )

with (x₁, y₁ ) = ([tex]\frac{1}{2}[/tex],[tex]\frac{2}{3}[/tex]) and (x₂, y₂ ) = ([tex]\frac{3}{2}[/tex],[tex]\frac{5}{3}[/tex])

m = ([tex]\frac{5}{3}[/tex] - [tex]\frac{2}{3}[/tex]) / ([tex]\frac{3}{2}[/tex] - [tex]\frac{1}{2}[/tex])

= [tex]\frac{1}{1}[/tex] = 1