Respuesta :

Answer:

It is the third one

I took the test XD

Step-by-step explanation:


Answer:

There is only one solution: x=10

The solution x=4 is an extraneous solution.

Step-by-step explanation:

We have this equation:

[tex]\sqrt{2x-4} -x+6=0[/tex]

Let's solve for x:

Add x to both sides:

[tex]\sqrt{2x-4} -x+x+6=0+x\\\sqrt{2x-4}+6=x[/tex]

Subtract 6 from both sides:

[tex]\sqrt{2x-4}+6-6=x-6\\\sqrt{2x-4}=x-6[/tex]

Raise both sides to the power of two:

[tex]2x-4=(x-6)^2[/tex]

Expand out the terms of the right side:

[tex]2x-4=x^2-12x+36[/tex]

Subtract 2x from both sides and add 4 to both sides:

[tex]x^2-14x+40=0[/tex]

Factor into a product:

[tex](x-10)(x-4)=0[/tex]

So the solutions are:

[tex]x_1=10\\x_2=4[/tex]

Evaluating [tex]x_1[/tex] :

[tex]\sqrt{2*10-4}  -10+6=0\\4-10+6=0\\0=0[/tex]

This solution is correct.

Evaluating [tex]x_2[/tex] :

[tex]\sqrt{2*4-4}  -4+6=0\\2-4+6=0\\4=0[/tex]

So this solution is incorrect.

Therefore:

There is only one solution: x=10

The solution x=4 is an extraneous solution.