Identify whether each value of x is a discontinuity of the function by typing asymptote, hole, or neither. 5x/ x3 + 5x2 + 6x

Respuesta :

Answer:

Function is discontinuous at

x=0   (Hole)

x=-3  (Vertical asymptote)

x=-2  (Vertical asymptote)

Step-by-step explanation:

Given: [tex]f(x)=\dfrac{5x}{x^3+5x^2+6x}[/tex]

We need to identity the discontinuity of the function. As we know function is discontinuous where it is not defined.

So, The function is discontinuous at hole, asymptote and break point.

[tex]f(x)=\dfrac{5x}{x^3+5x^2+6x}[/tex]

[tex]f(x)=\dfrac{5x}{x(x^2+5x+6)}[/tex]

[tex]f(x)=\dfrac{5x}{x(x+3)(x+2)}[/tex]

For hole, we will cancel like factor from numerator and denominator.

At x=0 we get hole.

For vertical asymptote, we set denominator to 0

x+3=0  and   x+2=0

Vertical asymptote:

x=-3 and x=-2

Function is discontinuous at

x=0   (Hole)

x=-3  (Vertical asymptote)

x=-2  (Vertical asymptote)

The vertical asymptote of a function are the zeroes of the denominator of a rational function

The function is discontinuous at:

  • [tex]\mathbf{x = 0}[/tex] --- hole.
  • [tex]\mathbf{x =-2\ or\ x = -3}}[/tex] --- vertical asymptote

The function is given as:

[tex]\mathbf{f(x) = \frac{5x}{x^3 + 5x^2 + 6x}}[/tex]

Factor out x, from the denominator

[tex]\mathbf{f(x) = \frac{5x}{x(x^2 + 5x + 6)}}[/tex]

Expand

[tex]\mathbf{f(x) = \frac{5x}{x(x^2 + 2x +3x + 6)}}[/tex]

Factorize

[tex]\mathbf{f(x) = \frac{5x}{x(x(x + 2) +3(x + 2)}}[/tex]

Factor out x + 2

[tex]\mathbf{f(x) = \frac{5x}{x(x + 2)(x +3)}}[/tex]

Cancel out like factors

[tex]\mathbf{f(x) = \frac{5}{(x + 2)(x +3)}}[/tex]

There is no coefficient of x in the numerator.

So, we have:

[tex]\mathbf{x = 0}[/tex] --- hole

Equate the denominator of [tex]\mathbf{f(x) = \frac{5}{(x + 2)(x +3)}}[/tex] to 0

[tex]\mathbf{x + 2 =0\ or\ x +3= 0}}[/tex]

Solve for x

[tex]\mathbf{x =-2\ or\ x = -3}}[/tex]

So, the vertical asymptote is:

[tex]\mathbf{x =-2\ or\ x = -3}}[/tex]

Read more about vertical asymptote and holes at:

https://brainly.com/question/9404499