Arrange the cones in order from least volume to greatest volume.
a cone with a
diameter of 20
units and a
height of 12 units

a cone with a
diameter of 18
units and a height
of 10 units

a cone with a
radius of 10 units
and a height of
9 units

a cone with a
radius of 11 units
and a height of
9 units

Respuesta :

Answer: The required arrangement of volumes in increasing order will be

a) d) c) b)

Explanation:

Since we have given that

cone with different diameters and heights all we need to do is to find the volume of cones :

As we know the formula for volume of cone which is given by

[tex]Volume=\frac{1}{3}\pi r^2h[/tex]

a) Diameter = 20 units

Radius = 10 units

Height = 12 units

So, Volume is given by

[tex]v=\frac{1}{3}\times \frac{22}{7}\times 10\times 10\times 12=1257.14\ cubic\ units[/tex]

b) Diameter = 18 units

Radius = 9 units

Height = 10 units

So, Volume is given by

[tex]v=\frac{1}{3}\times \frac{22}{7}\times 9\times 9\times 10=848.57\ cubic\ units[/tex]

c) Radius = 10 units

Height = 9 units

So, Volume is given by

[tex]v=\frac{1}{3}\times \frac{22}{7}\times 10\times 10\times 9=942.85\ cubic\ units[/tex]

d) Radius = 11 units

Height = 9 units

So, Volume is given by

[tex]v=\frac{1}{3}\times \frac{22}{7}\times 11\times 11\times 9=1140.85\ cubic\ units[/tex]

So, the required arrangement of volumes in increasing order will be

a) d) c) b)

Answer:

847.8 cubic units , 942 cubic units , 1139.80 cubic units , 1256 cubic units

Step-by-step explanation:

The volume of cone is given as: [tex]\pi r^{2} \frac{h}{3}[/tex]

1. radius =[tex]20/2=10[/tex]

height = 12

So, volume = [tex]3.14\times10\times10\times \frac{12}{3}[/tex]

= 1256 cubic units

2. radius = [tex]18/2=9[/tex]

height = 10

So, volume = [tex]3.14\times9\times9\times \frac{10}{3}[/tex]

= 847.8 cubic units

3. radius = 10

height = 9

So, volume = [tex]3.14\times10\times10\times \frac{9}{3}[/tex]

= 942 cubic units

4. radius = 11

height = 9

So, volume = [tex]3.14\times11\times11\times \frac{9}{3}[/tex]

= 1139.80 cubic units

Now arranging these in least volume to greatest volume or ascending order.

847.8 cubic units , 942 cubic units , 1139.80 cubic units , 1256 cubic units