Respuesta :
Answer: The required arrangement of volumes in increasing order will be
a) d) c) b)
Explanation:
Since we have given that
cone with different diameters and heights all we need to do is to find the volume of cones :
As we know the formula for volume of cone which is given by
[tex]Volume=\frac{1}{3}\pi r^2h[/tex]
a) Diameter = 20 units
Radius = 10 units
Height = 12 units
So, Volume is given by
[tex]v=\frac{1}{3}\times \frac{22}{7}\times 10\times 10\times 12=1257.14\ cubic\ units[/tex]
b) Diameter = 18 units
Radius = 9 units
Height = 10 units
So, Volume is given by
[tex]v=\frac{1}{3}\times \frac{22}{7}\times 9\times 9\times 10=848.57\ cubic\ units[/tex]
c) Radius = 10 units
Height = 9 units
So, Volume is given by
[tex]v=\frac{1}{3}\times \frac{22}{7}\times 10\times 10\times 9=942.85\ cubic\ units[/tex]
d) Radius = 11 units
Height = 9 units
So, Volume is given by
[tex]v=\frac{1}{3}\times \frac{22}{7}\times 11\times 11\times 9=1140.85\ cubic\ units[/tex]
So, the required arrangement of volumes in increasing order will be
a) d) c) b)
Answer:
847.8 cubic units , 942 cubic units , 1139.80 cubic units , 1256 cubic units
Step-by-step explanation:
The volume of cone is given as: [tex]\pi r^{2} \frac{h}{3}[/tex]
1. radius =[tex]20/2=10[/tex]
height = 12
So, volume = [tex]3.14\times10\times10\times \frac{12}{3}[/tex]
= 1256 cubic units
2. radius = [tex]18/2=9[/tex]
height = 10
So, volume = [tex]3.14\times9\times9\times \frac{10}{3}[/tex]
= 847.8 cubic units
3. radius = 10
height = 9
So, volume = [tex]3.14\times10\times10\times \frac{9}{3}[/tex]
= 942 cubic units
4. radius = 11
height = 9
So, volume = [tex]3.14\times11\times11\times \frac{9}{3}[/tex]
= 1139.80 cubic units
Now arranging these in least volume to greatest volume or ascending order.
847.8 cubic units , 942 cubic units , 1139.80 cubic units , 1256 cubic units