Respuesta :

frika

The diagram shows the graph of the function [tex]f(x)=b^x.[/tex]

This graph is increasing, when b>1 and decreasing, when 0<b<1.

From this graph (in case 0<b<1) you can see that

  • [tex]f(x)\to \infty,[/tex] when [tex]x\to -\infty;[/tex]
  • [tex]f(x)\to 0,[/tex] when [tex]x\to \infty.[/tex]

Answer: correct option B.


Ver imagen frika

Answer:

b)f(x) -->0, when x --->∞ and f(x)--->∞, when x--->-∞

Step-by-step explanation:

First let's draw the graph.

Here f(x) = b^x, when 0 < b < 1

Here b greater than zero and less than 1.

Therefore, b must be number which is less 1 and greater 0.

Let's take b = 1/2 and the function becomes f(x) = (1/2)^x

Now let's draw the graph to find the answer.

In the graph,

f(x) -->0, when x --->∞ and f(x)--->∞, when x--->-∞

Therefore, answer is b)f(x) -->0, when x --->∞ and f(x)--->∞, when x--->-∞

Ver imagen ikarus