Respuesta :

[tex]Solution, \mathrm{Factor}\:x^3-7x^2+2x+4:\quad \left(x-1\right)\left(x^2-6x-4\right)[/tex]

[tex]Steps:[/tex]

[tex]x^3-7x^2+2x+4[/tex]

[tex]Use\:the\:rational\:root\:theorem,\\a_0=4,\:\quad a_n=1,\\\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:4,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1,\\\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm \frac{1,\:2,\:4}{1},\\\frac{1}{1}\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x-1,\\\left(x-1\right)\frac{x^3-7x^2+2x+4}{x-1}[/tex]

[tex]\frac{x^3-7x^2+2x+4}{x-1}[/tex]

[tex]\mathrm{Divide}\:\frac{x^3-7x^2+2x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}x^3-7x^2+2x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{x^3}{x},\\\mathrm{Quotient}=x^2,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}x^2:\:x^3-x^2,\\\mathrm{Subtract\:}x^3-x^2\mathrm{\:from\:}x^3-7x^2+2x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=-6x^2+2x+4,\\Therefore,\\\frac{x^3-7x^2+2x+4}{x-1}=x^2+\frac{-6x^2+2x+4}{x-1}[/tex]

[tex]\mathrm{Divide}\:\frac{-6x^2+2x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}-6x^2+2x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{-6x^2}{x}=-6x,\\\mathrm{Quotient}=-6x,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}-6x:\:-6x^2+6x,\\\mathrm{Subtract\:}-6x^2+6x\mathrm{\:from\:}-6x^2+2x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=-4x+4,\\\mathrm{Therefore},\\\frac{-6x^2+2x+4}{x-1}=-6x+\frac{-4x+4}{x-1}[/tex]

[tex]\mathrm{Divide}\:\frac{-4x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}-4x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{-4x}{x}=-4,\\\mathrm{Quotient}=-4,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}-4:\:-4x+4,\\\mathrm{Subtract\:}-4x+4\mathrm{\:from\:}-4x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=0,\\\mathrm{Therefore},\\\frac{-4x+4}{x-1}=-4[/tex]

[tex]\mathrm{The\:Correct\:Answer\:is\:\left(x-1\right)\left(x^2-6x-4\right)}[/tex]

[tex]\mathrm{Hope\:This\:Helps!!!}[/tex]

[tex]\mathrm{-Austint1414}[/tex]