Respuesta :
Hey there!:
From the given data ;
Reaction volume = 1 mL , enzyme content = 10 ug ( 5 ug in 2 mg/mL )
Enzyme mol Wt = 45,000 , therefore [E]t is 10 ug/mL , this need to be express as "M" So:
[E]t in molar = g/L * mol/g
[E]t = 0.01 g/L * 1 / 45,000
[E]t = 2.22*10⁻⁷
Vmax = 0.758 umole/min/ per mL
= 758 mmole/L/min
=758000 mole/L/min => 758000 M
Therefore :
Kcat = Vmax/ [E]t
Kcat = 758000 / 2.2*10⁻⁷ M
Kcat = 3.41441 *10¹² / min
Kcat = 3.41441*10¹² / 60 per sec
Kcat = 5.7*10¹⁰ s⁻¹
Hence kcat of xyzase is 5.7*10¹⁰ s⁻¹
Hope that helps!
The [tex]k_{cat}[/tex] of XYZase will be "76 s⁻¹".
As we know,
Line Weaver burk equation,
- [tex]\frac{1}{V} = (\frac{K_m}{V_{max}.S} )+(\frac{1}{V_{max}} )[/tex]
Series 2 is:
- [tex]XYZase[/tex]
Here,
→ [tex]1.317 = \frac{1}{V_{max}}[/tex]
→ [tex]V_{max} = \frac{1}{1.317}[/tex]
[tex]= 0.76[/tex]
Also,
→ [tex]291.4 = \frac{K_m}{V_{max}}[/tex]
→ [tex]291.4 = \frac{K_m}{0.76}[/tex]
→ [tex]K_m = 291.4\times 0.76[/tex]
[tex]= 221.5[/tex]
hence,
The [tex]k_{cat}[/tex] of [tex]XYZase[/tex] will be:
→ [tex]K_{cat} = \frac{V_{max}}{Et}[/tex]
By substituting the values, we get
→ [tex]= \frac{0.76}{0.01}[/tex]
→ [tex]=76 \ s^{-1}[/tex]
Thus the above answer is right.
Learn more:
https://brainly.com/question/4745688