Respuesta :

Hey, there! For this question, we can just start by plugging in the known values. [tex](f + g)(x)[/tex] can be rewritten as [tex](\frac{x}{2} - 3 + 3x^2 + x - 6)(x)[/tex].

Combine like terms: [tex](\frac{x}{2} + x - 3 - 6 + 3x^2)(x)[/tex]

If you add x to [tex]\frac{x}{2}[/tex], x will become [tex]\frac{2x}{2}[/tex], which means that x/2 + x = 3/2x.

--> [tex](\frac{3}{2}x - 9 + 3x^2)(x)[/tex]

If you rearrange this, then your answer will be option b. Hope this helps.

       f(x) = [tex]\frac{x}{2}[/tex] - 3

    + g(x) = 3x² + x - 6

f(x) + g(x) = 3x² + [tex]\frac{x}{2}[/tex] + x  -3 - 6

              = 3x² + [tex]\frac{3}{2}x[/tex] - 9

Answer: B