Respuesta :
Answer:
[tex]Average\:Rate\:Change=-59.4[/tex]
Step-by-step explanation:
The given function is [tex]f(x)=120(0.1)^x[/tex].
We want to find the average rate of change of this function from [tex]x=0[/tex] to [tex]x=2[/tex].
This is given by:
[tex]Average\:Rate\:Change=\frac{f(2)-f(0)}{2-0}[/tex]
This implies that;
[tex]Average\:Rate\:Change=\frac{120(0.1)^2-120(0.1)^0}{2-0}[/tex]
[tex]Average\:Rate\:Change=\frac{120(0.1)^2-120}{2}[/tex]
[tex]Average\:Rate\:Change=\frac{120((0.1)^2-1)}{2}[/tex]
[tex]Average\:Rate\:Change=\frac{60(0.01-1)}{1}[/tex]
[tex]Average\:Rate\:Change=60(-0.99)[/tex]
[tex]Average\:Rate\:Change=-59.4[/tex]
Answer:
Give Me Brainliest, PS -59.4 is the answer
Step-by-step explanation:
Just took the test