Respuesta :
7√7
using the ' rule of radicals '
• √a × √b ⇔ √ab
simplifying the radicals
√28 = √(4 × 7 ) = √4 × √7 = 2√7
√63 = √(9 × 7) =√9 × √7 = 3√7
√112 = √(16 × 7 ) = √16 × √7 = 4√7
substituting into the expression
3(2√7) - 5(3√7) + 4(4√7) = 6√7 - 15√7 + 16√7 = 7√7
First, simply each term. Then, add the coefficients of the like terms (same radicals).
[tex]3\sqrt{28} = 3\sqrt{2*2*7} = 3(2)\sqrt{7} = 6\sqrt{7}[/tex]
[tex]5\sqrt{63} = 5\sqrt{3*3*7} = 5(3)\sqrt{7} = 15\sqrt{7}[/tex]
[tex]4\sqrt{112} = 4\sqrt{2*2*2*2*7} = 4(2*2)\sqrt{7} = 16\sqrt{7}[/tex]
*********************************************************
[tex]3\sqrt{28} - 5\sqrt{63} + 4\sqrt{112}[/tex]
= [tex]6\sqrt{7} - 15\sqrt{7} + 16\sqrt{7}[/tex]
= [tex](6 - 15 + 16)\sqrt{7}[/tex]
= [tex]7\sqrt{7}[/tex]