Respuesta :
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is
[tex]\left(5.00\,\dfrac{\mathrm m}{\mathrm s}\right)\left(\dfrac{1\,\mathrm{rev}}{2\pi(2.9\,\mathrm m)}\right)\approx0.2744\,\dfrac{\mathrm{rev}}{\mathrm s}[/tex]
so that its period is [tex]T=3.644\,\frac{\mathrm s}{\mathrm{rev}}[/tex] (where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration [tex]\Delta t[/tex]. Denote by [tex]\theta[/tex] the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then
[tex]\Delta t=0.4\,\mathrm s\implies\dfrac{3.644\,\mathrm s}{360^\circ}=\dfrac{0.4\,\mathrm s}\theta\implies\theta\approx39.56^\circ[/tex]
[tex]\Delta t=0.2\,\mathrm s\implies\dfrac{3.644\,\mathrm s}{360^\circ}=\dfrac{0.2\,\mathrm s}\theta\implies\theta\approx19.78^\circ[/tex]
[tex]\Delta t=7\times10^{-2}\,\mathrm s\implies\dfrac{3.644\,\mathrm s}{360^\circ}=\dfrac{7\times10^{-2}\,\mathrm s}\theta\implies\theta\approx6.923^\circ[/tex]
We can then compute the magnitude of the velocity vector differences [tex]\Delta\vec v[/tex] for each time interval by using the law of cosines:
[tex]|\Delta\vec v|^2=|\vec v_1|^2+|\vec v_2|^2-2|\vec v_1||\vec v_2|\cos\theta[/tex]
[tex]\implies|\Delta\vec v|=\begin{cases}3.384\,\frac{\mathrm m}{\mathrm s}&\text{for }\Delta t=0.4\,\mathrm s\\1.718\,\frac{\mathrm m}{\mathrm s}&\text{for }\Delta t=0.2\,\mathrm s\\0.6038\,\frac{\mathrm m}{\mathrm s}&\text{for }\Delta t=7\times10^{-2}\,\mathrm s\end{cases}[/tex]
and in turn we find the magnitude of the average acceleration vectors to be
[tex]\implies|\vec a|=\begin{cases}8.460\,\frac{\mathrm m}{\mathrm s^2}&\text{for }\Delta t=0.4\,\mathrm s\\8.588\,\frac{\mathrm m}{\mathrm s^2}&\text{for }\Delta t=0.2\,\mathrm s\\8.625\,\frac{\mathrm m}{\mathrm s^2}&\text{for }\Delta t=7\times10^{-2}\,\mathrm s\end{cases}[/tex]
So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.