Respuesta :
First of all m<1 + m<2 = m<ACD
Soo we just need to add them.
74 + 36 = 110
So m<ACD = 110 degrees.
GOOD LUCK! :)
Answer:
[tex]m\angle ACD=110^{\circ}[/tex]
Step-by-step explanation:
Given information: AO = OD, OB = OC, m∠1=74˚, m∠2=36˚.
In triangle OAB and ODC,
[tex]AO=OD[/tex] (Given)
[tex]m\angle AOB=m\angle DOC[/tex] (Vertical angles)
[tex]OB=OC[/tex] (Given)
By SAS postulate,
[tex]\triangle OAB\cong \triangle ODC[/tex]
[tex]\angle OBA\cong \triangle OCD[/tex] (CPCTC)
[tex]m\angle OBA=m\triangle OCD[/tex]
[tex]74^{\circ}=m\triangle OCD[/tex]
From the given figure it is clear that
[tex]\angle ACD=\angle ACO+\angle OCD[/tex]
[tex]\angle ACD=36^{\circ}+74^{\circ}[/tex]
[tex]\angle ACD=110^{\circ}[/tex]
Therefore, the measure of angle ACD is 110°.