find the equation of the line that contains the given point and the given slope. Write the equation in slope-intercept form.
1. (4.1) slope = 6

2. (6,-3) slope= -5

3. (-8, 2) slope = -1/2

4. (-7,-1) slope = 0

Respuesta :

gmany

The slope-point form of a line:

[tex]y-y_0=m(x-x_0)[/tex]

The slope-intercept form of a line:

[tex]y=mx+b[/tex]

1.

[tex]m=6,\ (4,\ 1)\to x_0=4,\ y_0=1[/tex]

Substitute

[tex]y-1=6(x-4)\qquad|\text{use distributive property}\\\\y-1=6x-24\qquad|\text{add 1 to both sides}\\\\\boxed{y=6x-23}[/tex]

2.

[tex]m=-5,\ (6,\ -3)[/tex]

Substitute

[tex]y-(-3)=-5(x-6)\qquad|\text{use distributive property}\\\\y+3=-5x+30\qquad|\text{subtract 5 from both sides}\\\\\boxed{y=-5x+24}[/tex]

3.

[tex]m=-\dfrac{1}{2},\ (-8,\ 2)\\\\y-2=-\dfrac{1}{2}(x-(-8))\\\\y-2=-\dfrac{1}{2}(x+8)\\\\y-2=-\dfrac{1}{2}x-4\qquad|\text{add 2 to both sides}\\\\\boxed{y=-\dfrac{1}{2}x-2}[/tex]

4.

[tex]m=0,\ (-7,\ -1)\\\\y-(-1)=0(x-(-7))\\\\y+1=0\qquad|\text{subtract 1 from both sides}\\\\\boxed{y=-1}[/tex]