Respuesta :

Given:  sin theta = 2/5.  This tells us that the lengths of the opp side and the hyp are 2 and 5 respectively.  The adj side is found using the Pyth. Thm.:  5^2-2^2= 25-4 = 21, so that the adj side is sqrt(21).

The double angle formula for the sine is sin 2theta = 2 sin theta *cos theta.

In this particular problem, the sine of 2theta is 2*(2/5)*[sqrt(21) / 5], or:

                                                                              (4/25)*sqrt(21).

Answer:

The value of [tex]\sin^2 \theta=\frac{4}{25}[/tex]                                                                            

Step-by-step explanation:

Given : [tex]\sin \thet=\frac{2}{5}[/tex] and  [tex]0<\theta<90[/tex]

To find : The value of [tex]\sin^2\theta[/tex] ?

Solution :

We have given the value of [tex]\sin \thet=\frac{2}{5}[/tex] and  [tex]0<\theta<90[/tex]

To find [tex]\sin^2\theta[/tex] we just have to square [tex]\sin\theta[/tex]

[tex]\sin \theta=\frac{2}{5}[/tex]

Squaring both sides,

[tex](\sin \theta)^2=(\frac{2}{5})^2[/tex]

[tex]\sin^2 \theta=\frac{4}{25}[/tex]

Therefore, The value of [tex]\sin^2 \theta=\frac{4}{25}[/tex]