contestada

In △ABC the angle bisectors drawn from vertices A and B intersect at point D. Find ∠ADB if: c ∠C=130°

Respuesta :

In Δ ABC, let A = x°

By Angle-sum property,

A + B + C = 180°

But, it is given that C = 130°

So, x + B + 130 = 180

B = 180 - 130 - x

B = 50 - x

Since AD and BD are internal bisectors of A and B,

∠ DAB = x/2 and

∠ DBA = [tex]\frac{50-x}{2}[/tex]

[tex]=25-\frac{x}{2}[/tex]

In Δ ADB, by angle-sum property,

∠ DBA + ∠ DAB +∠ ADB = 180°

[tex]=(25-\frac{x}{2} )+\frac{x}{2} +[/tex] + ∠ ADB = 180°

25 + ∠ ADB = 180°

∠ ADB = 180 - 25 = 155°

Hence, ∠ ADB = 155°.


Ver imagen JannetPalos

Answer = 155 degrees