Respuesta :

Answer:

[tex](x-i\sqrt 5)^2(x+i\sqrt5)^2[/tex]

Step-by-step explanation:

We are given that an expression

[tex]x^4+10x^2+25[/tex]

We have to find the factorize the expression completely over the cmplex number.

[tex](x^2+5)^2[/tex]

Using identity [tex](a+b)^2=a^2+b^2+2ab[/tex]

[tex](x^2+5)(x^2+5)[/tex]

Substitute each factor equal to zero.

[tex]x^2+5=0[/tex] ,[tex]x^2+5=0[/tex]

[tex]x^2=-5[/tex]

[tex]x=\pm \sqrt{-5}=\pm i \sqrt 5[/tex]

[tex]x=i\sqrt 5[/tex] and [tex]x=-i\sqrt 5[/tex]

[tex]x-i\sqrt 5=0[/tex] and [tex]x+i\sqrt 5=0[/tex]

The factor of second term is also same

Therefore, the factors of the   expression completely is given by

[tex](x-i\sqrt 5)^2(x+i\sqrt5)^2[/tex]