Respuesta :

The magnitude of the change in potential energy is equal to the kinetic energy,

[tex]\left | \Delta U \right |= K[/tex]

or                        

[tex]qV=\frac{1}{2} mv^{2}[/tex]    

Here, V is potential difference, q is charge, m is mass and v is velocity.

We can also write,

[tex]v=\sqrt{\frac{2qV}{m} }[/tex]

Given  [tex]V=380 V[/tex]

Substituting this value with mass of proton, [tex]m=1.672\times10^{-27}  kg[/tex] and charge of proton,[tex]q= 1.6\times10^{-19} C[/tex] we get

[tex]v=\sqrt{\frac{2\times1.6\times10^{-19}C \times 380V}{1.672\times10^{-27}  kg} }\\\\v= 727.27\times10^{8} m/s =7.27\times10^{6}m/s[/tex]

Therefore, the speed of proton is [tex]7.27\times10^{6}m/s[/tex].


Answer:

The speed of a proton after it accelerates from rest is 2.698x10⁵ m/s

Explanation:

Please look at the solution in the attached Word file

Ver imagen lcoley8