Item 4 part a if a proton and an electron are released when they are 4.50×10−10 m apart (typical atomic distances), find the initial acceleration of each of them.

Respuesta :

Acceleration is defined as the rate of change of velocity with respect to time.

Formulas of force are given by:

[tex]F=ma[/tex]   (1)

where,

F = force

m = mass

a = acceleration

[tex]F=\frac{kq_{1}q_{2}}{r^{2}}[/tex]   (2)

where,

F = force

k = coulomb constant ([tex]9\times 10^{9}Nm^{2}C^{-2}[/tex])

r = distance between the charged particles

[tex]q_{1}[/tex] and [tex]q_{2}[/tex] are the signed magnitude of charges

Use the formula (2) for calculating the value of force, we get:

Substitute the value of [tex]q_{1}[/tex] and [tex]q_{2}[/tex], k and r to find the value of force.

F= [tex]\frac{9\times 10^{9} Nm^{2}C^{-2}\times (1.6\times 10^{-19} C)^{2}}{(4.50\times 10^{-10})^{2}}[/tex]

= [tex]1.1378\times 10^{-9} N[/tex]

Now, put the above value force in formula (1) to identify the initial acceleration.

[tex]1.1378\times 10^{-9} N=ma[/tex]   (1)   (mass of electron  =[tex]9.1 \times 10^{-31} kg[/tex])

acceleration of electron = [tex]\frac{1.1378\times 10^{-9} N}{9.1\times 10^{-31}kg}[/tex]

= [tex]1.25\times 10^{21}N/kg[/tex]

And,

acceleration of proton =[tex]\frac{1.1378\times 10^{-9} N}{mass of proton}[/tex]

mass of proton =[tex]1.67 \times  10^{-27}[/tex]

Thus,

acceleration of proton = [tex]\frac{1.1378\times 10^{-9} N}{1.67 \times  10^{-27} kg}[/tex]

=[tex]6.81 \times  10^{17} N/kg[/tex]

Now, initial acceleration of electron and proton is  [tex]1.25\times 10^{21}m/s^{2}[/tex] and [tex]6.81 \times  10^{17} m/s^{2}[/tex] as 1 N = [tex]kgm/s^{2}[/tex].