Verify that the divergence theorem is true for the vector field f on the region
e. give the flux. f(x, y, z) = 2xi + xyj + 2xzk, e is the cube bounded by the planes x = 0, x = 3, y = 0, y = 3, z = 0, and z = 3.

Respuesta :

We have

[tex]\mathrm{div}(\mathbf f)=\nabla\cdot\mathbf f=\dfrac{\partial(2x)}{\partial x}+\dfrac{\partial(xy)}{\partial y}+\dfrac{\partial(2xz)}{\partial z}=2+3x[/tex]

By the divergence theorem, the flux of [tex]\mathbf f[/tex] over the region [tex]\mathcal S[/tex] that bounds the region [tex]\mathcal E[/tex] is

[tex]\displaystyle\iint_{\mathcal S}\mathbf f\cdot\mathrm d\mathbf S=\iiint_{\mathcal E}\nabla\cdot\mathbf f\,\mathrm dV[/tex]

[tex]=\displaystyle\int_{x=0}^{x=3}\int_{y=0}^{y=3}\int_{z=0}^{z=3}(3+2x)\,\mathrm dz\,\mathrm dy\,\mathrm dx[/tex]

[tex]=\displaystyle3^2\int_{x=0}^{x=3}(3+2x)\,\mathrm dx=162[/tex]