Respuesta :

(x+2)^2-2(x+2)-15=0

x^2 + 4x + 4 -2x -4 - 15 = 0

x^2 + 2x - 15 = 0

(x + 5)(x - 3) = 0

x +5 = 0; x = -5

x - 3 = 0; x = 3

Answer

x = -5 , 3

Solve the Equation, with the Quadratic Formula:

( x + 2)^2 - 2( x + 2) - 15 = 0

Solution:

( x + 2)^2 - 2( x + 2) - 15 = 0 ==> x = 3, or x = - 5

Steps:

( x + 2)^2 - 2( x + 2) - 15 = 0

Expand:

( x + 2)^2 - 2( x + 2) - 15: ==> x^2 + 2x - 15

( x + 2)^2 - 2( x + 2) - 15 ==> ( x + 2)^2: ==> x^2 + 4x + 4

Apply Perfect Square Formula: ( a + b )^2 = a^2 + 2ab + b^2

a = x, b = 2 ==> x^2 + 2x * 2 + 2^2

Simplify:

x^2 + 2x * 2 + 2^2: ==> x^2 + 4x + 4

==> x^2 + 2x * 2 + 2^2

Multiply the Numbers:

2 * 2 = 4 ==> x^2 + 4x + 2^2

2^2 = 4 ==> x^2 + 4x + 4

x^2 + 4x + 4 - 2(x + 2) - 15

Expand:

- 2(x + 2): ==> - 2x - 4 - 2(x + 2)

Apply the distributive Law: a( b + c) ==> ab + ac

a = - 2, b = x, c = 2

==> - 2x + ( - 2) * 2

Apply the Plus (+), and Minus ( - ), Rules:

+ ( - a ) ==> - a ==> - 2x - 2 * 2

Multiply the Numbers: 2 * 2 = 4

x^2 + 4x + 4 - 2x - 4 - 15

Simplify: x^2 + 4x + 4 - 2x - 4 - 15: ==> x^2 + 2x - 15

Group Like Terms:

x^2 + 4x + 4 - 2x - 4 - 15

Add Similar Elements: 4x - 2x ==> 2x

x^2 + 4x + 4 - 2x - 4 - 15

Add / Subtract the Numbers: 4 - 4 - 15 ==> - 15

x^2 + 2x - 15 ==> x^2 + 2x - 15 ==> x^2 + 2x - 15 = 0

Solve With Quadratic Formula / Quadratic Equation Formula:

For a Quadratic Equation of the Form: ax^2 + bx + c = 0,

The Solutions are: x^1, 2 = - b sqrt +/- sqrt b^2 - 4ac / 2a

For a = 1, b = 2, c = - 15, x^1, 2 = - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1

x = - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1 ==> 3

= - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1

Apply Rule: - ( - a ) ==> a

= - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1

sqrt 2^2 + 4 * 1 * 15 = 64

sqrt 2^2 + 4 * 1 * 15

2^2 = 4

sqrt 4 + 4 * 1 * 15

Multiply Numbers: 4 * 1 * 15 = 60

= sqrt 4 + 60

Add Numbers: 4 + 60 = 64

sqrt 64 ==> - 2 + sqrt 64 / 2 * 1

Multiply the Numbers: 2 * 1 = 2

- 2 + sqrt 64 / 2

sqrt 64 = 8

sqrt 64

Factor the Number: 64 = 8^2

==> sqrt 8^2

Apply Radical Rule: n sqrt a^n = a

sqrt 8^2 = 8 ==> 8 ==> - 2 + 8/2

Add / Subtract the Numbers: - 2 + 8 = 6 ==> 6/2

Divid the Numbers: 6/2 = 3 ==> 3

x = - 2 - sqrt 2^2 - 4 * 1 ( - 15) / 2 * 1 ==> - 5

- 2 - sqrt 2^2 - 4 * 1 ( - 15) / 2 * 1

Apply Rule: - ( - a ) = a

- 2 - sqrt 2^2 - 4 * 1 ( - 15) / 2 * 1

sqrt 2^2 + 4 * 1 ( - 15) = sqrt 64

sqrt 2^2 + 4 * 1 ( - 15)

2^2 = 4

sqrt 4 + 4 * 1 * 15

Multiply the Numbers: 4 * 1 * 15 = 60

sqrt 4 + 60

Add the Numbers: 4 + 60 = 64 ==> sqrt 64

= - 2 - sqrt 64 / 2 * 1

Multiply the Numbers: 2 * 1 = 2

= - 2 - sqrt 64 / 2

sqrt 64 = 8 ==> sqrt 64

Factor the Number: 64 = 8^2 ==> sqrt 8^2

Apply Radical Rule: n sqrt a^n = a

sqrt 8^2 = 8 ==> 8 ==> - 2 - 8 / 2

Subtract: - 2 - 8 = - 10 ==> - 10 / 2

Apply the Fraction Rule: - a / b = - a / b ==> - 10 / 2

Divide Numbers: 10 / 2 = 5 ==> - 5

Therefore, The Final Solution / Answers, to your Quadratic Equations to:

(x + 2)^2 - 2(x+2) - 15 =0 ==> x = 3, and x = - 5,

Check the upload for Graph of: ( x + 2)^2 - 2( x + 2) - 15 = 0,

Answers: (x = 3), (x = - 5).

Hope that helps!!!!! : )

Ver imagen claudettoterohil