Respuesta :
Si el promedio de cuatro numeros impares cosecutivos es 28, entonces el mayor de los numeros corresponde
If the average of four consecutive odd numbers is 28, then the largest of the numbers corresponds to
So, Let us suppose largest odd number is x
Then, smaller consecutive odd numbers are x-2, x-4, x-6
The average of four consecutive odd numbers=28
As, Average=[tex] \frac{Sum}{Number} [/tex]
So, Average=[tex] \frac{(x-6)+(x-4)+(x-2)+(x)}{4} [/tex]
28=[tex] \frac{x+x+x+x-6-4-2}{4} [/tex]
Let us multiply by 4 on both sides to get rid of fractions
28*4=[tex] \frac{4*(4x-12)}{4} [/tex]
112=[tex] \frac{1*(4x-12)}{1} [/tex]
112=4x-12
To solve for x, Let us add 12 on both sides
112+12=4x-12+12
124=4x+0
124=4x
Let us divide by 4 on both sides
[tex] \frac{124}{4}=\frac{4x}{4} [/tex]
31=x
or, x=31
so, the largest odd number is 31
el número impar más grande es 31