Respuesta :

Si el promedio de cuatro numeros impares cosecutivos es 28, entonces el mayor de los numeros corresponde

If the average of four consecutive odd numbers is 28, then the largest of the numbers corresponds to

So, Let us suppose largest odd number is x

Then, smaller consecutive odd numbers are x-2, x-4, x-6

The average of four consecutive odd numbers=28

As, Average=[tex] \frac{Sum}{Number} [/tex]

So, Average=[tex] \frac{(x-6)+(x-4)+(x-2)+(x)}{4} [/tex]

28=[tex] \frac{x+x+x+x-6-4-2}{4} [/tex]

Let us multiply by 4 on both sides to get rid of fractions

28*4=[tex] \frac{4*(4x-12)}{4} [/tex]

112=[tex] \frac{1*(4x-12)}{1} [/tex]

112=4x-12

To solve for x, Let us add 12 on both sides

112+12=4x-12+12

124=4x+0

124=4x

Let us divide by 4 on both sides

[tex] \frac{124}{4}=\frac{4x}{4} [/tex]

31=x

or, x=31

so, the largest odd number is 31

el número impar más grande es 31

Otras preguntas