simplify each exponential expression using the properties of exponents and match it to the correct answer
i have tried to figure this out and have failed it more times then i care to admit
❤ thanks for your help


simplify each exponential expression using the properties of exponents and match it to the correct answeri have tried to figure this out and have failed it more class=

Respuesta :

3^-3 * 2^-3 *6^3 / (4^0)^2

= 6^-3 * 6^3 / (1)^2

= 1 / 1

= 1

---------------------------------------

2^4 * 3^5 / (2*3)^5

= 2^4 * 3^5 / 2^5 *3^5

= 1/ 2^1

= 1/2

---------------------------

(3 * 2)^4 * 3^-3 / 2^3 * 3

=3^4 * 2^4 * 3^-3 / 2^3 * 3

= 3^1 * 2^4 / 2^3 * 3

= 2^1

= 2

-----------------------

3^2 * 4^3 * 2^-1 / (3 * 4)^2

= 3^2 * 4^3 / 3^2 * 4^2 * 2^1

= 4^1 / 2^1

= 4/2

= 2

Exponential expressions can be represented in form of indices.

The results of the expressions are:

  • [tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 1}[/tex].
  • [tex]\mathbf{\frac{2^4 \cdot 3^5}{(2\cdot 3)^5} = \frac{1}{2}}[/tex].
  • [tex]\mathbf{\frac{(3 \cdot 2)^4 \cdot 3^{-3}}{2^3 \cdot 3} = 2}[/tex].
  • [tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = 2}[/tex]

[tex]\mathbf{(a)\ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2}}[/tex]

Express 4^0 as 1

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{1^2}}[/tex]

Express 1^2 as 1

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 3^{-3} \cdot 2^{-3} \cdot 6^3}[/tex]

Express 6 as 2 * 3

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 3^{-3} \cdot 2^{-3} \cdot (2 \times 3)^3}[/tex]

Expand

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 3^{-3} \cdot 2^{-3} \cdot 2^3 \times 3^3}[/tex]

Rewrite as:

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 3^{-3} \times 3^3 \cdot 2^{-3} \times 2^3 }[/tex]

Apply law of indices

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 3^{-3+3} \cdot 2^{-3+3} }[/tex]

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 3^{0} \cdot 2^0 }[/tex]

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 1 \cdot 1 }[/tex]

[tex]\mathbf{ \frac{3^{-3} \cdot 2^{-3} \cdot 6^3}{(4^0)^2} = 1}[/tex]

[tex]\mathbf{(b)\ \frac{2^4 \cdot 3^5}{(2\cdot 3)^5}}[/tex]

Open bracket

[tex]\mathbf{\frac{2^4 \cdot 3^5}{(2\cdot 3)^5} = \frac{2^4 \cdot 3^5}{2^5 \cdot 3^5}}[/tex]

Apply laws of indices

[tex]\mathbf{\frac{2^4 \cdot 3^5}{(2\cdot 3)^5} = 2^{4-5} \cdot 3^{5-5}}[/tex]

[tex]\mathbf{\frac{2^4 \cdot 3^5}{(2\cdot 3)^5} = 2^{-1} \cdot 3^{0}}[/tex]

[tex]\mathbf{\frac{2^4 \cdot 3^5}{(2\cdot 3)^5} = 2^{-1} \cdot 1}[/tex]

[tex]\mathbf{\frac{2^4 \cdot 3^5}{(2\cdot 3)^5} = 2^{-1}}[/tex]

Rewrite as:

[tex]\mathbf{\frac{2^4 \cdot 3^5}{(2\cdot 3)^5} = \frac{1}{2}}[/tex]

[tex]\mathbf{(c)\ \frac{(3 \cdot 2)^4 \cdot 3^{-3}}{2^3 \cdot 3}}[/tex]

Expand bracket

[tex]\mathbf{\frac{(3 \cdot 2)^4 \cdot 3^{-3}}{2^3 \cdot 3} = \frac{3^4 \cdot 2^4 \cdot 3^{-3}}{2^3 \cdot 3}}[/tex]

Apply law of indices

[tex]\mathbf{\frac{(3 \cdot 2)^4 \cdot 3^{-3}}{2^3 \cdot 3} = 3^{4-3-1} \cdot 2^{4-3}}[/tex]

[tex]\mathbf{\frac{(3 \cdot 2)^4 \cdot 3^{-3}}{2^3 \cdot 3} = 3^{0} \cdot 2^{1}}[/tex]

[tex]\mathbf{\frac{(3 \cdot 2)^4 \cdot 3^{-3}}{2^3 \cdot 3} = 1 \cdot 2}[/tex]

[tex]\mathbf{\frac{(3 \cdot 2)^4 \cdot 3^{-3}}{2^3 \cdot 3} = 2}[/tex]

[tex]\mathbf{(d)\ \frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2}}[/tex]

Express 4 as 2^2

[tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = \frac{3^2 \cdot (2^2)^3 \cdot 2^{-1}}{(3\cdot 2^2)^2}}[/tex]

[tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = \frac{3^2 \cdot 2^6 \cdot 2^{-1}}{(3\cdot 2^2)^2}}[/tex]

Open bracket

[tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = \frac{3^2 \cdot 2^6 \cdot 2^{-1}}{3^2\cdot 2^4}}[/tex]

Apply law of indices

[tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = 3^{2-2} \cdot 2^{6-1-4}}[/tex]

[tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = 3^{0} \cdot 2^{1}}[/tex]

[tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = 1 \cdot 2}[/tex]

[tex]\mathbf{\frac{3^2 \cdot 4^3 \cdot 2^{-1}}{(3\cdot 4)^2} = 2}[/tex]

Read more about indices and exponential expressions at:

https://brainly.com/question/12916986