Respuesta :
If these are supposed to be exponential functions
[tex]\displaystyle f(x)=-\frac{6}{11}\left(\frac{11}{2}\right)^{x}\\\\g(x)=\frac{6}{11}\left(\frac{11}{2}\right)^{-x}\\\\h(x)=-\frac{6}{11}\left(\frac{11}{2}\right)^{-x}[/tex]
Then they are all defined for all real numbers, so all have the same domain. The range of f and h will be (-∞, 0) and the range of g will be (0, ∞), so these are different.
The appropriate statement choice is ...
... C)The ranges of f(x) and h(x) are different from the range of g(x).
[tex]f(x)=\frac{-6}{11}*(\frac{11}{2} )^{x}[/tex]
Domain : All real numbers since this is an exponential function.
Range : (-∞,0)
[tex]f(x)=\frac{6}{11}*(\frac{11}{2} )^{-x}[/tex]
Domain : All real numbers since this is an exponential function.
Range : (0,∞)
[tex]f(x)=\frac{-6}{11}*(\frac{11}{2} )^{-x}[/tex]
Domain : All real numbers since this is an exponential function.
Range : (-∞,0)
So Option C : )The ranges of f(x) and h(x) are different from the range of g(x).