Respuesta :

Let us first find out the radioactive constant of Phosphorus 32.

Radioactive constant, λ = [tex] \frac{ln2}{t_{1/2}} [/tex]

Here, [tex] {t_{1/2} [/tex] is half life of phosphorus 32 = 14.3 days

λ = [tex] \frac{ln2}{14.3} [/tex]

The amount of 4 mg of phosphorus remain after 71.5 days can be found using the formula,

m=m₀e⁻(λt)

= [tex] 4*e^{-\frac{ln2}{14.3}71.5} [/tex]

= [tex] 4*e^{-ln2*5} [/tex]

=[tex] 4*e^{-ln(2)^{5}} [/tex]

=[tex] 4*e^{-ln32} [/tex]

=[tex] \frac{4}{32} [/tex]

= 0.125 mg

The mass of 4 mg of phosphorus 32 remains after 71.5 days will be 0.125 mg.