Respuesta :

By the Zero Product Property, either  [tex]( e^{x}- e^{ \pi } )=0[/tex]  or  [tex] (e^{x}- \pi )=0 [/tex].  So we will solve for x in each case.  We need to take the natural log of each side in both cases since x is an exponent to base e, and the natural log has a base of e.  So taking the natural log of e "undo" each other, leaving us with just x.  Like this:  [tex] e^{x}-e^ \pi =0 [/tex]  so  [tex]e^x=e^ \pi [/tex].  Taking the natural log of each side gives us  [tex]ln(e^x)=ln(e^ \pi )[/tex].  Again, taking the natural log of base e undo each other, so  [tex]x= \pi [/tex].  That's the first root.  In the second case,  [tex]e^x- \pi =0[/tex]  so  [tex]e^x= \pi [/tex].  Taking the natural log of both sides we get  [tex]ln(e^x)=ln( \pi )[/tex].  That means that  [tex]x=ln( \pi )[/tex].  Your solutions are  [tex]x = \pi ,ln( \pi )[/tex]