Given that the speed of light is 2.998 x 108 m/s, what is the frequency of a wave that has a wavelength of 3.55 x 10-8 meters? 10.6429 x 10-2 Hz 8.445 x 1015 Hz 0.8445 Hz 10.6429 x 102 Hz 8.445 x 1012 Hz

Respuesta :

According to this formula V = C / wavelength

when V is the frequency (which we need to calculate)

and C is the speed of light (given) = 2.998 x 10^8 m/s

and the wavelength (given) = 3.55 x 10^-8

so, by substitution:

V = (2.998 x 10^8)  / (3.55 x 10^-8)

    = 8.44 x 10^15 Hz 


PBCHEM
Answer : Option B) 8.445 X [tex] 10^{15} [/tex] Hz

Explanation : 
To find the frequency of the given wavelength  we can use the given below formula;

                                    f = c / λ

where f - frequency;
c - speed of light;
λ - wavelength of light,

So, f = [tex] \frac{ (2.998 X 10^{8}) }{(3.55 X 10^{-8})} [/tex]

Hence, we get f = 8.45 X [tex] 10^{15} [/tex] Hz

So, the frequency of the wave will be = 8.45 X [tex] 10^{15} [/tex] Hz