Respuesta :

DeanR
In general an annual rate of [tex]r[/tex] compounded monthly will multiply the amount by a factor of [tex]1+\frac{r}{12}[/tex] each month. 

Each month of 4.3% is a factor of  [tex]1+\frac{.043}{12}[/tex].  That goes for five months, so is multiplied by itself five times, so gets a fifth power.

Each month of 13.7% is a factor of [tex]1+\frac{.137}{12}[/tex].  He pays this for 12-5=7 months, so it gets an exponent of seven.

We started the year owing $2600 of principal, so after the year we owe

[tex]2600(1+\frac{.043}{12})^5(1+\frac{.137}{12})^7[/tex].

Choice A.