Respuesta :
[tex]\bf ~~~~~~\textit{parabola vertex form}
\\\\
\begin{array}{llll}
y=a(x- h)^2+ k\\\\
x=a(y- k)^2+ h
\end{array}
\qquad\qquad
vertex~~(\stackrel{}{ h},\stackrel{}{ k})\\\\
-------------------------------\\\\
\stackrel{\textit{its vertex is at 9, -8}}{g(x)=(x-\stackrel{h}{9})^2\stackrel{k}{-8}}\qquad \qquad
\begin{cases}
h=9\\
k=-8
\end{cases}[/tex]
Answer:
[tex]g(x) = (x - 9)^2-8[/tex]
Step-by-step explanation:
The parent function of the function [tex]g(x) = (x - h)^2+k[/tex] is [tex]f(x)=x^2[/tex]
The vertex of the function g(x) is located at (9, -8)
We are given with vertex that is the value of h and k
[tex](9,-8)[/tex] where [tex]h=9[/tex] and [tex]k=-8[/tex]
[tex]g(x) = (x - h)^2+k[/tex]
Replace h and k values
[tex]g(x) = (x - 9)^2-8[/tex]