Respuesta :

Space

Answer:

E.  [tex]\displaystyle f'(s) = s^5 \sec^2 s + 5s^4 \tan x[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle f(s) = s^5 \tan s[/tex]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle f'(s) = (s^5)' \tan s + s^5(\tan s)'[/tex]
  2. Basic Power Rule/Trigonometric Differentiation:                                       [tex]\displaystyle f'(s) = 5s^4 \tan s + s^5 \sec^2 x[/tex]
  3. Rewrite:                                                                                                         [tex]\displaystyle f'(s) = s^5 \sec^2 s + 5s^4 \tan x[/tex]

∴ Our answer is E.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation