Respuesta :
In order to answer the above question, you should know the general rule to solve these questions.
The general rule states that there are 2ⁿ subsets of a set with n number of elements and we can use the logarithmic function to get the required number of bits.
That is:
log₂(2ⁿ) = n number of bits
a). What is the minimum number of bits required to store each binary string of length 50?
Answer: In this situation, we have n = 50. Therefore, 2⁵⁰ binary strings of length 50 are there and so it would require:
log₂(2⁵⁰) = 50 bits.
b). what is the minimum number of bits required to store each number with 9 base of ten digits?
Answer: In this situation, we have n = 50. Therefore, 10⁹ numbers with 9 base ten digits are there and so it would require:
log2(109)= 29.89
= 30 bits. (rounded to the nearest whole #)
c). what is the minimum number of bits required to store each length 10 fixed-density binary string with 4 ones?
Answer: There is (10,4) length 10 fixed density binary strings with 4 ones and
so it would require:
log₂(10,4)=log₂(210) = 7.7
= 8 bits. (rounded to the nearest whole #)
The general rule states that there are 2ⁿ subsets of a set with n number of elements and we can use the logarithmic function to get the required number of bits.
That is:
log₂(2ⁿ) = n number of bits
a). What is the minimum number of bits required to store each binary string of length 50?
Answer: In this situation, we have n = 50. Therefore, 2⁵⁰ binary strings of length 50 are there and so it would require:
log₂(2⁵⁰) = 50 bits.
b). what is the minimum number of bits required to store each number with 9 base of ten digits?
Answer: In this situation, we have n = 50. Therefore, 10⁹ numbers with 9 base ten digits are there and so it would require:
log2(109)= 29.89
= 30 bits. (rounded to the nearest whole #)
c). what is the minimum number of bits required to store each length 10 fixed-density binary string with 4 ones?
Answer: There is (10,4) length 10 fixed density binary strings with 4 ones and
so it would require:
log₂(10,4)=log₂(210) = 7.7
= 8 bits. (rounded to the nearest whole #)