[tex]\bf \begin{array}{cll}
term&value\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
a_1&94\\
a_2&94+d\\
a_3&94+d+d\\
a_4&94+d+d+d\\
a_5&94+d+d+d+d\\
a_6&94+d+d+d+d+d\\
&85
\end{array}\qquad \implies 85=94+5d
\\\\\\
-9=5d\implies \boxed{-\cfrac{9}{5}=d}\\\\
-------------------------------[/tex]
[tex]\bf n^{th}\textit{ term of an arithmetic sequence}
\\\\
a_n=a_1+(n-1)d\qquad
\begin{cases}
n=n^{th}\ term\\
a_1=\textit{first term's value}\\
d=\textit{common difference}\\
----------\\
a_1=94\\
d=-\frac{9}{5}
\end{cases}
\\\\\\
a_n=94+(n-1)\left(-\frac{9}{5} \right)\implies a_n=94+\cfrac{9}{5}-\cfrac{9}{5}n
\\\\\\
a_n=95\frac{4}{5}-\cfrac{9}{5}n[/tex]