Respuesta :

(f*g)(x)= (x+7)(1/x-13)

= (x+7)/(x-13)

so the domain ( -∞, 13)U(13,∞)

Answer:

The domain of the given equation is [tex]D=[x|x\neq 13][/tex]                              

Step-by-step explanation:

Given : If [tex]f(x)=x+7[/tex] and [tex]g(x)=\frac{1}{x-13}[/tex]

To find : What is the domain of [tex](fog)(x)[/tex]?

Solution :

We can write,

[tex](fog)(x)=f(g(x))[/tex]

[tex](fog)(x)=f(\frac{1}{x-13})[/tex]

[tex](fog)(x)=\frac{1}{x-13}+7[/tex]

[tex](fog)(x)=\frac{1+7x-91}{x-13}[/tex]

[tex](fog)(x)=\frac{7x-90}{x-13}[/tex]

We have seen that [tex](fog)(x)[/tex] to be defined when denominator cannot be zero.

i.e.   [tex]x-13\neq0[/tex]

 [tex]x\neq13[/tex]

So, The domain of the given equation is [tex]D=[x|x\neq 13][/tex]