Respuesta :

For this case what you should do is observe the table that the values of y of both functions are as similar as possible.
 We observed that:
 For the x 1.6 coordinate we have:
  [tex]y = 1.2 y = 1.4[/tex]
 Therefore, a good approximation of the solution is:
 [tex] \frac{(1.2 + 1.4)}{2} = 1.3 [/tex]
 The ordered pair solution is:
 (1.6, 1.3)
 Answer:
 
(1.6, 1.3)option A

Answer:

The correct option is A.

Step-by-step explanation:

The given table represent the value of two functions

[tex]y=-3x+6[/tex]                .... (1)

[tex]y=4x-5[/tex]                  .... (2)

Equate both the equations to find the solution of the equations.

[tex]-3x+6=4x-5[/tex]

Isolate like terms.

[tex]6+5=4x+3x[/tex]

[tex]11=7x[/tex]

[tex]\frac{11}{7}=x[/tex]

[tex]x\approx 1.571[/tex]

Put this value in equation (1).

[tex]y=-3(1.571)+6[/tex]

[tex]y\approx 1.287[/tex]

The solution of the system of equation is

[tex](1.571, 1.287)\approx (1.6,1.3)[/tex]

Therefore approximation of the exact solution is (1.6,1.3). The correct option is A.