Given: The coordinates of triangle PQR are P(0, 0), Q(2a, 0), and R(2b, 2c).

Prove: The line containing the midpoints of two sides of a triangle is parallel to the third side.

As part of the proof, find the midpoint of line PQ.

Given The coordinates of triangle PQR are P0 0 Q2a 0 and R2b 2c Prove The line containing the midpoints of two sides of a triangle is parallel to the third side class=

Respuesta :

The answer you're looking for is (a, 0) Hope this helps!

Answer:

Given: Coordinates of ΔPQR are P( 0 , 0 ) , Q( 2a , 0 ) and  R( 2b , 2c )

To Proof: Line containing the midpoints x & Y of two sides PQ & PR of a triangle is parallel to the third side QR .i.e XY║QR

First We find Mid Point of side PQ and PR say X & Y respectively and then we find slope of line XY and QR. As if there slope is equal then they are parallel.

Formula of Mid point is given by

[tex]Coordinates\,of\,Mid\,Point\,=\,(\frac{x_2+x_1}{2},\frac{y_2+y_1}{2})[/tex]

So, Coordinated of Mid Point of PQ , X = [tex](\frac{2a+0}{2},\frac{0+0}{2})[/tex]

                                                          = [tex](\frac{2a}{2},\frac{0}{2})[/tex]

                                                          = ( a , 0 )

Coordinates of Mid Point of PR, Y = [tex](\frac{2b+0}{2},\frac{2c+0}{2})[/tex]

                                                         = [tex](\frac{2b}{2},\frac{2c}{2})[/tex]

                                                         = ( b , c )

Slope of a line is given by,

[tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]

Slope of Line XY = [tex]\frac{c-0}{b-a}[/tex]

                            = [tex]\frac{c}{b-a}[/tex]

Slope of Line QR = [tex]\frac{2c-0}{2b-2a}[/tex]

                            = [tex]\frac{2c}{2(b-a)}[/tex]

                            = [tex]\frac{c}{b-a}[/tex]

Since, Slope of XY = Slope of QR

⇒ XY is parallel to QR

Hence proved