1a. Given that P = (5,4), Q = (7,3), R = (8,6), and S = (4,1), find the component form of the vector PQ + 3RS.

a. (-10,-16)
b. (-6,4)
c. (-2,-6)
d. (14,14)

1b. Use the information from 1a to find the magnitude of the vector PQ + 3RS.

a. 356
b. √26
c. 2√10
d. 2√89

2a. Given that P = (5,4), Q = (7,3), R = (8,6), and S = (4,1), find the component form of the vector PQ + 4RS.

a. (18,19)
b. (-2,-6)
c. (-14,-21)
d. (-18,-19)

2b. Use the information from 2a to find the magnitude of the vector PQ + 4RS.

a. 2√10
b. 7√10
c. √35
d. 637

3a. Given that P = (5,4), Q = (7,3), R = (8,6), and S = (4,1), find the component form of the vector PQ + 5RS.

a. (22,24)
b. (-2,-6)
c. (-18,-26)
d. (-22,-24)

3b. Use the information from 3a to find the magnitude of the vector PQ + 5RS.

a. 1000
b. 10√10
c. 2√11
d. 2√10

Respuesta :

1a. A
1b. D
2a. C
2b. B
3a. C
3b. B

Answer:

1a) a) [tex]\overrightarrow {\alpha} = (-10,-16)[/tex], 1b) [tex]\| \overrightarrow {\alpha} \| = 2\sqrt{89}[/tex], 2a) [tex]\overrightarrow {\alpha} = (-14,-21)[/tex], 2b) [tex]\| \overrightarrow {\alpha} \| = 7\sqrt{13}[/tex], 3a) [tex]\overrightarrow {\alpha} = (-18,-26)[/tex], 3b) [tex]\| \overrightarrow {\alpha} \| = 10\sqrt{10}[/tex]

Step-by-step explanation:

1a) The vectors [tex]\overrightarrow {PQ}[/tex] and [tex]\overrightarrow {RS}[/tex] are determined:

[tex]\overrightarrow {PQ} = (7-5,3-4)[/tex]

[tex]\overrightarrow {PQ} = (2, -1)[/tex]

[tex]\overrightarrow {RS} = (4-8,1-6)[/tex]

[tex]\overrightarrow {RS} = (-4, -5)[/tex]

The component form of the resultant vector is:

[tex]\overrightarrow {\alpha} = (2 -12, -1-15)[/tex]

[tex]\overrightarrow {\alpha} = (-10,-16)[/tex]

1b) The magnitude of the resultant vector is:

[tex]\| \overrightarrow {\alpha} \| = \sqrt{(-10)^{2}+(-16)^{2}}[/tex]

[tex]\| \overrightarrow {\alpha} \| = 2\sqrt{89}[/tex]

2a) The vectors [tex]\overrightarrow {PQ}[/tex] and [tex]\overrightarrow {RS}[/tex] are determined:

[tex]\overrightarrow {PQ} = (7-5,3-4)[/tex]

[tex]\overrightarrow {PQ} = (2, -1)[/tex]

[tex]\overrightarrow {RS} = (4-8,1-6)[/tex]

[tex]\overrightarrow {RS} = (-4, -5)[/tex]

The component form of the resultant vector is:

[tex]\overrightarrow {\alpha} = (2 -16, -1-20)[/tex]

[tex]\overrightarrow {\alpha} = (-14,-21)[/tex]

2b) The magnitude of the resultant vector is:

[tex]\| \overrightarrow {\alpha} \| = \sqrt{(-14)^{2}+(-21)^{2}}[/tex]

[tex]\| \overrightarrow {\alpha} \| = 7\sqrt{13}[/tex]

3a) The vectors [tex]\overrightarrow {PQ}[/tex] and [tex]\overrightarrow {RS}[/tex] are determined:

[tex]\overrightarrow {PQ} = (7-5,3-4)[/tex]

[tex]\overrightarrow {PQ} = (2, -1)[/tex]

[tex]\overrightarrow {RS} = (4-8,1-6)[/tex]

[tex]\overrightarrow {RS} = (-4, -5)[/tex]

The component form of the resultant vector is:

[tex]\overrightarrow {\alpha} = (2 -20, -1-25)[/tex]

[tex]\overrightarrow {\alpha} = (-18,-26)[/tex]

3b) The magnitude of the resultant vector is:

[tex]\| \overrightarrow {\alpha} \| = \sqrt{(-18)^{2}+(-26)^{2}}[/tex]

[tex]\| \overrightarrow {\alpha} \| = 10\sqrt{10}[/tex]