Respuesta :
^0 ...............1
^1..............1 1
^2............1 2 1
^3...........1 3 3 1
^4..........1 4 6 4 1
(x+2)^4 = 1(x)^4(2)^0 + 4(x)^3(2)^1 + 6(x)^2(2)^2 + 4(x)^1(2)^3 + 1(x)^0(2)4
= [tex] x^{4} + 8 x^{3} + 24 x^{2} + 32x + 16[/tex]
^1..............1 1
^2............1 2 1
^3...........1 3 3 1
^4..........1 4 6 4 1
(x+2)^4 = 1(x)^4(2)^0 + 4(x)^3(2)^1 + 6(x)^2(2)^2 + 4(x)^1(2)^3 + 1(x)^0(2)4
= [tex] x^{4} + 8 x^{3} + 24 x^{2} + 32x + 16[/tex]
Alexa's answer is: [tex](x+2)^4=x^4+8x^3+24x^2+32x+16[/tex].
Using the binomial theorem we get:
[tex](x+2)^4 \\\\=(4C0)(x)^4(2)^0 + (4C1)(x)^3(2)^1 + (4C2)(x)^2(2)^2 + (4C3)(x)^1(2)^3 + (4C4)(x)^0(2)^4\\\\= 1(x)^4(2)^0 + 4(x)^3(2)^1 + 6(x)^2(2)^2 + 4(x)^1(2)^3 + 1(x)^0(2)^4\\\\=x^4+8x^3+24x^2+32x+16[/tex]
Learn more: https://brainly.com/question/10772040